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Abstract

Pointing is a fundamental communicative gesture in hu-
mans that can convey a great deal of complexity. It can
involve both multi-level reasoning and ambiguity of refer-
ence. Computer vision systems today for tasks like seman-
tic segmentation and object detection cannot extend to tasks
that are inherently ambiguous and involve inter-annotator
disagreement. Thus, pointing represents a new frontier in
computer vision. We describe the object-part inference task,
which entails identifying whether a point refers to a specific
part of an object or the object as a whole. We use a joint
supervision approach to train a deep learning model, and
show the feasibility of this model for this task. In partic-
ular, it achieves 68.5% accuracy in distinguishing between
”whole object” and ”part” queries. We then examine the
ambiguity of the task by first training the model with soft
labels, which improves the accuracy on ambiguous points.
We then train a model to explicitly predict points as am-
biguous, which achieves reasonable results and for which
we show the model uncertainty can be roughly tuned. Fi-
nally, we discuss future directions for ambiguity modeling,
such as Bayesian inference.

1. Introduction
Pointing is an important and fundamental communica-

tive gesture in humans. It is one of the first gestures that
develops in infants and plays a central role in language ac-
quisition [9]. This suggests that modeling pointing might
be a promising approach to improve current computer vi-
sion systems, and to encourage potential AI-human collab-
oration in the visual domain.

The task of pointing represents a new frontier in com-
puter vision. Deep learning systems have achieved great
success in tasks like image classification, semantic segmen-
tation, and object detection. These tasks, however, do not
involve both multi-level reasoning and ambiguity. Pointing
in the wild is a complex gesture that could convey a wide
range and depth of meaning (e.g., look at what action that
part of that object is doing). In addition, and our focus in

this paper, pointing can be reasonably interpreted in differ-
ent ways by humans themselves. Deep learning has so far
succeeded at tasks that involve human agreement, but point-
ing by nature is ambiguous.

The operative question is what it would mean for a com-
puter to succeed at the task of pointing. Given an image and
a pointing gesture, the computer should be able to answer
”What’s that?” with the desired level of granularity. This
task is difficult to model, but we can introduce an approx-
imation of this task that retains the central features of this
task.

1.1. The Object-Part Inference Task

The object-part inference task is the following: given an
image I and a point (x, y) in the image, identify both the
object that the point is on and whether if a human is pointing
to that point, they are referring to a specific part of the object
or the object as a whole. Figure 1 shows an example of
two query points, one ”part” query and one ”whole object”
query, as they will be referred to hereafter.

Figure 1: An example of a part query point (green) and a
whole object query point (red).

This task is more complex than semantic segmentation,
which involves identifying only the object is on, and better
approximates the task of human pointing. When humans
point to an object, they are often referring to a specific part:
for example, pointing to the foot of a person likely refers to
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a specific part, while pointing to the torso might refer to the
person as a whole. Crucially, humans can reasonably dis-
agree on whether a point refers to a part or the whole object.
Thus, the object-part inference task captures the complex-
ity and the ambiguity of human pointing more effectively.
Ir allows us to progress towards a more general understand-
ing of pointing, while still being a feasible enough task to
define and model practically.

1.2. Outline

In this paper, I present new results on the object-part
inference task from my previous work [24]. I build deep
learning models using a joint supervision framework to
show the feasibility of the task on an expanded dataset. I
then focus my paper on understanding and modeling the
ambiguity in the task. I first transform the labels into soft
probability distributions over the classes and evaluate this
compared to a one-class approach. Then, I train models to
specifically predict the existence of ambiguous points and
present both qualitative and quantitative results. I end with
a discussion of other possible approaches to modeling the
ambiguity of the task.

2. Related Work
The task of pointing has not been studied in-depth. How-

ever, we review several research areas in image understand-
ing as well as ambiguity.

2.1. Segmentation

Semantic segmentation is the task of annotating every
pixel in the image with a label, rather than the image as
a whole. The encoder-decoder architecture introduced by
[23] has become the state-of-the-art deep learning model for
semantic segmentation. This approach uses an image classi-
fication model like VGG-16 [30] to downsample the image
followed by an upsampling. [23] used simple bilinear up-
sampling, while more complex approaches involve several
upsampling steps [15, 3, 27].

Instance segmentation involves disambiguating different
object classes as well as different instances of the same ob-
ject class (e.g. multiple people in an image). The task is
far less solved than semantic segmentation, but several ap-
proaches have been proposed [17, 25, 26]. The most no-
table is DeepMask [26], which learns semantic segmenta-
tion masks for image patches jointly with their likelihood to
contain objects. Our model is based off the encoder-decoder
architecture approach developed for semantic segmentation.

2.2. Saliency

Semantic segmentation generally does not involve inter-
annotator disagreement, unlike the object-part inference
task. Predicting image saliency, or which regions of the im-

age draw more attention than others, is somewhat more sub-
jective. Given an image, the goal is to output a pixel-wise
saliency map indicating the saliency of each image region.
Many methods use low-level features such as contrast and
brightness to solve the task [7, 32]. However, deep learn-
ing has shown to be the state-of-the-art on this task. The
general approach involves a CNN with convolutional layers
at multiple scales and/or contexts [10, 21, 31]. It is possi-
ble that saliency is correlated with the object-part inference
task in that part regions of an object may be more salient
than whole object regions. However, my previous work [24]
shows that this correlation is quite weak.

2.3. Ambiguity

A growing body of research has focused on modeling un-
certainty in deep learning. This work is motivated by sev-
eral real-world scenarios, such as medical diagnosis, where
the uncertainty of a prediction is important to understand.
An active area of research is Bayesian deep learning, which
seeks a probability distribution over the set of weights in
a model. The most popular method thus far is variational
Bayesian inference, which in practice is equivalent to a
dropout network with Monte-Carlo sampling [20, 13]. The
model predicts an uncertainty value, which is learned in an
unsupervised fashion from a modified loss function. This
approach has shown to yield improved results on tasks like
image classification and semantic segmentation [20]. Al-
though we do not use this approach, we briefly discuss it in
the conclusion.

Some alternative approaches to uncertainty have been
proposed. These include predicting multiple hypotheses
and learning probability distributions over the set of labels
[28, 14]. In this work, we first evaluate the performance of
soft labels for an ambiguous task. Second, we develop a
model to explicitly predict ambiguous instances of the task,
a novel contribution in relation to previous research.

2.4. Pointing

The task of human pointing has not been studied exten-
sively in computer vision. There has been work in robotics
on understanding and using pointing as a means of human-
robot collaboration, but most focus on understanding the
direction of pointing rather than intent [5, 2]. [19] creates a
cost optimization model to make robot pointing more ’leg-
ible’ to humans, but this model still focuses on understand-
ing the object being pointed to, which is a superficial under-
standing of human pointing. Other research has focused on
pointing as means of improving HCI interfaces [1, 16].

Points have been used as sparse supervisory signals in
image classification and semantic segmentation [4, 22].
With time and budget constraints, labeling a few points per
image has shown to be reasonably effective at semantic seg-
mentation [4]. Hinthorn was the first to study pointing from
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a human perspective, and specifically the object-part infer-
ence task [18]. His contributions include a pilot dataset
for the object-part inference task, extensive analysis of this
dataset, and preliminary work on deep learning models. In
this paper, I build off my previous work, which built deep
learning models to demonstrate the feasibility of the task
[24]. I train and evaluate these models on a significantly ex-
panded dataset, and then focus on modeling the ambiguity
in the task through the two different approaches described
above.

3. Methods
3.1. Dataset and Tasks

I use the Pascal Points Dataset [12], which is a dataset
of human-labeled points based off the Pascal VOC dataset.
Pascal VOC is a seminal dataset in computer vision that
consists of 11,530 images and 20 object classes (bus, car,
cat, etc.), and is popular for semantic segmentation [6]. One
iteration of the dataset is Pascal Parts, which consists of
pixel-wise annotations for each part of each object in the
images.

The Pascal Points Dataset is built using Pascal Parts. It
consists of ∼ 50000 points across over 8000 images, each
point annotated with the corresponding object and whether
it is referring to part or whole object. 15 of the 20 object
classes are used. At least three human labelers annotate
each point. Notably, approximately 30% of the points in the
dataset are ambiguous, meaning that at least one annotator
disagreed with the consensus. This indicates the inherent
ambiguity of the task. Figure 2 shows some sample points
in the dataset.

(a) (b)

Figure 2: Examples of points in the dataset. (a) An unam-
biguous part point; (b) An unambiguous whole object point.

3.1.1 Ambiguous Points

The high percentage of ambiguous points in the dataset un-
derlines the inherent ambiguity of the object-part inference
task. Figure 3 shows a selection of ambiguous points, which
tend to fall into three general categories. The first is points
on genuinely ambiguous regions of the object (e.g. neck),

(a) aeroplane (b) cow

(c) train (d) bicycle

Figure 3: Examples of ambiguous points. The top two
points are on ambiguous regions of the object. The bot-
tom left is in the image background, and the bottom right is
located on object boundaries.

such as in the first image. The second is points that clearly
refer to parts of objects that are far in the background of the
image. Humans tend to often identify all points on these
objects as ’whole object’ points given the apparent distance
of the object from the observer. The last category of am-
biguous points are those where it is unclear which object
the point is referring to, either due to occlusion or simply
being located at the boundaries of objects. These points are
very rare in the dataset.

Given this dataset, we can define the following two tasks:

1. Task 1: Given the ground truth object class, predict
whether the point refers to a specific part or the whole
object. This is a binary classification problem.

2. Task 2: Predict both the object class and the reference
of the point. This is an N -way classification problem.

Since the focus of this paper is on ambiguity, we can also
define a third task. Task 3 is the accuracy of the model on
ambiguous points, i.e. points with inter-annotator disagree-
ment. As we will see, the notion of this accuracy is defined
differently for different models.

3.2. Model Design

We can frame object-part inference as an image-to-
image problem for the purpose of designing models.
For each image I in the dataset, there are k points in
Pascal Points that are labeled. We can use a fully-
convolutional network to output pixel-wise predictions for
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Figure 4: The model architecture. The top head computes the segmentation loss with respect to dense labels. The bottom
head computes the object-part loss and is supervised on the points in Pascal Points. Both heads use cross-entropy loss. The
dimension of the bottom head is 20 object classes + 15 part classes + background = 36.

Task 2, and then supervise over the k labeled pixels. Fully-
convolutional networks are an extension of convolutional
neural networks that involve downsampling via an image
classifier followed by upsampling. We use the FCN-32s ar-
chitecture developed by the original authors [23], consisting
of VGG-16 followed by a bilinear upsampling. However,
this approach yields low accuracy due to the sparsity of the
labels. Our approach must take advantage of existing anno-
tations to augment the ground truth provided to the model.

Thus, we use the joint supervision approach depicted in
Figure 4. The model consists of two heads, which share
weights until the final fully-connected layer. Each head then
consists of a separate fully-connected layer and upsampling.
For purposes of clarity, our model has 36 classes (20 object
classes + 15 part classes + background). This is because
only 15 objects are present in Pascal Points: for each of
these 15, there is one class for ”whole object” and another
for ”part”. The ”object-part head” of the model outputs a
W × H × 36 prediction over all possible classes, which
is then supervised over the labeled points in Pascal Points.
The ”semantic head” of the model outputs a W × H × 21
prediction over the possible semantic segmentation classes,
which is then supervised over the dense masks in the Pascal
VOC dataset. Each head of the model is trained using cross-
entropy loss. The final loss is the sum of the two individual
losses, i.e. L = Lsparse + Lsemantic.

The advantages of this approach are two-fold. First, it
allows the model to approximately separate the task of dis-
ambiguating between objects and distinguishing between
whole object and part, while still enabling each head of the
model to learn from each other. Second and related, it en-
ables efficient debugging of the model, since the issue can

be isolated to a particular head of the model and by exten-
sion a particular sub-task. All the following models are built
using this joint supervision approach.

3.3. Soft Labels

As mentioned, roughly 30% of the points in the dataset
are ambiguous. In order to allow the model to deal better
with ambiguity, we can use soft labels instead of one-hot
encoding. A soft label is a probability distribution over the
set of classes. Consider a toy problem with 2 classes and
5 human annotators per example. If four labeled an ex-
ample 1 and one 0, then the one-hot label would be [0 1]
and the soft label would be [0.2 0.8]. Soft labels allows
the model to better capture the uncertainty associated with
training examples. We can train the model using soft labels
for ambiguous points and keep the other aspects of training
identical.

For a theoretical justification of why we can use cross-
entropy, consider the same toy problem. The cross-entropy
loss isL =

∑
c yc log(pc), where the sum is over the classes

and pc is the predicted probability of the c-th class. For the
one-hot encoding, the loss would be log(p1). However, for
the soft label, the loss is 0.2 log(p0) + 0.8 log(p1). Taking
the derivative and setting to 0, we have 0.2

p0
= 0.8

p1
, and thus

the function is minimized at p0 = 0.2, p1 = 0.8. Thus,
given soft labels, cross-entropy loss motivates the model to
predict the correct probabilities of each class. We train a
36-way model using soft labels.

3.4. Predicting Ambiguous Points

Since ambiguity is a feature of the object-part inference
task, we can train our model to explicitly predict ambiguous
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points. In this formulation, each point can be categorized
into its object class and then as either whole object, part,
or ambiguous. For the original 36-way model, this now be-
comes a 51-way model (+15 ambiguous classes). Since this
is a large number of classes relative to the size of the dataset,
we introduce the 9-way model.

The 20 object classes in Pascal VOC can be grouped into
4 ”super-classes”: person, animal, vehicle, and indoor. We
can train the model to predict part/whole object for these 4
super-classes, for a total of 9 classes when including back-
ground. The advantage is that the model may potentially
be able to perform object-part inference more successfully
with a smaller number of classes, since object disambigua-
tion is easier. This advantage is particular evident when we
introduce an ambiguous category for each object class: the
original model has 51 classes, while the super-class model
has 13 classes. After training a 9-way model, we can then
train a 13-way model to explicitly predict the existence of
ambiguous points.

We can use a weighted cross-entropy loss to prioritize the
model’s performance on ambiguous points. The loss on the
i-th example would read as Li = αi

∑
c yc log(pc), where

αi is the weight of the i-th example in the loss. Intuitively,
we penalize those examples more on which we prioritize
correct classification. We experiment with weighting am-
biguous points both higher and lower and measure how this
both quantitatively and qualitatively affects performance.

3.5. Implementation Details

From my previous work [24], we significantly expand
the dataset. The Pascal Points Dataset consists of 8,204 im-
ages. In the previous work, only these images were used
with an 80/20 split for training and validation, resulting in
6,563 training images. However, the Berkeley version of
the Pascal VOC dataset consists of 11,504 images with as-
sociated segmentation masks [12]. The semantic head of
the joint supervision model can trained with all of these im-
ages, even those without annotations in Pascal Points. Thus,
we incorporate all 11,504 images with a 90/10 training val-
idation split, for a total of 10,353 images in the training set.
This is more 1.5 times the size of the original training set.

The models were trained using stochastic gradient de-
scent with momentum of 0.9 and a learning rate of either
10−3 or 10−4. We experimented with adaptive learning rate
methods like Adam but did not find a measurable increase
in performance. The weights were initialized to the pre-
trained VGG-16 weights on the ImageNet classification task
[29, 11]. The models were built in Keras, a high-level deep
learning API based off of Tensorflow [8]. Custom losses
and metrics were written to only supervise on labeled pix-
els for the object-part head of the model.

4. Results
4.1. Original Tasks

Since we use a new dataset, we first compare the results
to my work in [24]. Table 1 shows the results. We can see
that the 36-way model performs slightly better on both Task
1 and Task 2, but vice versa for the 9-way model. This re-
sult is not altogether surprising. Since the dataset was aug-
mented with images that have semantic segmentation masks
but no points for object-part inference, the semantic head of
the model benefits most from the augmentation. In other
words, the model improves at disambiguating between ob-
jects but not at distinguishing between whole object and part
points. This is likely to benefit the 36-way model more,
since it contains a greater number of object classes.

36-way T1 36-way T2 9-way T1 9-way T2
Prev 67.53% 53.56% 69.93% 63.46%
Now 68.45% 57.36% 68.02% 59.96%

Table 1: Results of the 36-way and 9-way models on Task 1
and Task 2 using the expanded dataset compared to the old
dataset.

Overall, this is a reasonable result and shows the feasi-
bility of deep learning models on the object-part inference
task. The accuracy is significant for Task 2, and the accu-
racy of 68.45% on Task 1, binary classification of whole
object vs. part, demonstrates the ability of the model to
generally distinguish between whole object and part points.
Figure 5 shows qualitative results of the 36-way model on
images in the validation set.

4.2. Soft Label Model

The next comparison point is the model with soft labels,
which is intended to more accurately represent the ambigu-
ity inherent in the task. This model performs comparably
but slightly worse than the one-hot model, with an accuracy
of 55.79% on Task 2. However, it performs particularly well
on ambiguous points. The accuracy of the one-hot model on
ambiguous points is 47.44%, while the accuracy of the soft
label model is 53.24%. Table 2 summarizes these results.

Task 2 Task 3
One-hot 57.36% 47.44%
Soft Label 55.79% 53.24%

Table 2: Comparing the one-hot and soft label methods on
Task 2 and Task 3.

The results indicate that encoding labels for ambigu-
ous points as probability distributions has little effect over-
all, but increases the model’s performance on ambiguous
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(a) aeroplane (b) cow

(c) train (d) bicycle

Figure 5: Qualitative results of the 36-way model on images across several classes. Blue indicates predicted part regions of
the object and yellow predicted whole object regions of the object.

points. This is an interesting result, as it indicates that the
soft label model is able to capture the uncertainty associated
with ambiguous points and find the majority human consen-
sus reasonably effectively. In particular, we draw from this
that a soft label approach can be effective for instances of a
task that are particularly ambiguous.

Figure 6 contrasts predictions of the one-hot model and
the soft-label model on the same images. The soft label
model predictions are generally more uncertain and arbi-
trary, as the first two images show. Although both models
perform well on the two images, the soft label model is less
smooth than the one-hot model and rather arbitrarily pre-
dicts some regions to be part. This is reasonable, since the
soft label model is likely to output more uncertain predic-
tions given the nature of the labels. The third image shows
an example where the soft label model performs better than
the one hot model. As discussed, objects are in the back-
ground generally cause ambiguity in the task, and so the
ambiguity associated with the image might lead to the bet-
ter performance of the soft label method.

4.3. Ambiguity Prediction

We also try to model ambiguity by adding a third cate-
gory to the model, such that the model explicitly predicts

ambiguous points. We use the 13-way ”super-class” model,
which is the 9-way model with ambiguous points explic-
itly predicted. As might be expected, introducing ambiguity
into the model decreases performance. On the 13-way clas-
sification task, the model achieves a reasonable accuracy of
50.83%. The accuracy on ambiguous points specifically is
49.54%, which interestingly is not significantly lower than
the overall accuracy. Finally, the 3-way accuracy condi-
tioned on the object class is 55.15%. This is significantly
lower than the 2-way accuracy of the 9-way model, indi-
cating that ambiguous points pose a particular challenge for
the model. However, it is still far above the random expec-
tation for a 3-way classification (33%), indicating that the
model is still able to make some progress on the task. This
is significant given the difficulty of classifying ambiguous
points. Figure 7 shows the performance of the 9-way model
and the 13-way model on two images. Both models appear
to understand the object similarly, but the 13-way ”ambigu-
ous model” characterizes the ambiguous regions reasonably
well to provide a more nuanced understanding of object-
part inference.

As discussed in Section 3.4, we can weight ambiguous
points higher or lower when training the model, depending
on our priority to classify them correctly. Since the accu-
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One-hot Soft label

Figure 6: The left column shows object/part predictions of
the one-hot model, and the right column object/part predic-
tions of the soft label model. The soft label model predic-
tions are generally more uncertain and arbitrary, as the first
two images show. The third image is an example of where
the soft label model performs better than the one-hot model.

racy on ambiguous points is comparable to the overall ac-
curacy, we experiment with both approaches. First, we give
all points with ambiguous classes a weight of 10 and other
classes a weight of 1, which we call HI-AMB. We then give
all points with ambiguous classes a weight of 0.1 and other
classes a weight of 1, which we call LO-AMB.

The 13-way accuracy is comparable for all three mod-
els. Surprisingly, however, HI-AMB does not yield a higher
accuracy than LO-AMB on points in the validation set:
45.87% vs. 46.09%. A possible explanation for this is that
the HI-AMB model is overfitting on the ambiguous points
in the training set and not generalizing well to the ambigu-
ous points in the validation set. Qualitative analysis, how-
ever, suggests that HI-AMB’s predictions are more uncer-
tain than LO-AMB. Figure 8 shows an example of the same
image in increasing order of ambiguity weight. It and other
images indicate that the model’s uncertainty can be tuned,
if not precisely.

5. Conclusion and Future Work

In this paper, we first describe the object-part inference
task and motivate it by the possibility of a general under-

9-way 13-way

Figure 7: Object/part predictions for the 9-way and 13-way
model on two images. Red indicates regions of the ob-
ject predicted to be ambiguous. The 13-way model appears
to identify ambiguous regions reasonably effectively. Note
that the 9-way model does not predict ambiguity.

(a) w = 0.1 (b) w = 1 (c) w = 10

Figure 8: An example of models with different ambiguous
class weights evaluated on the same image. With increasing
ambiguity weight appears increasing ambiguity.

standing of human pointing. We then describe a joint su-
pervision deep learning approach to the task that combines
sparse and dense annotations. We show that this model per-
forms reasonably well on an expanded dataset, indicating
the feasibility of this task for computer vision systems to
solve.

We focus the remainder of the paper on ambiguity. First,
we show that using soft labels instead of one-hot encod-
ing increases the model’s accuracy on ambiguous points,
while also generally increasing the uncertainty of the model.
Second, we train a model to explicitly predict ambiguous
points. We show that this model achieves significant accu-
racy on both an N -way and a 3-way classification task, and
is able to characterize ambiguous regions of objects reason-
ably well. Finally, we over-weight and under-weight am-
biguous points in the training set to demonstrate how we
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can tune the amount of model uncertainty.
The ability of the model to characterize ambiguous re-

gions is a significant achievement. Deep learning systems
thus far have relied on human labelers as objective ground
truth. Given the ambiguity and complexity of human vi-
sual perception, this substantially limits the amount of tasks
that computer vision systems can solve. By training mod-
els to predict where humans might disagree, we build a
much more sophisticated understanding of human percep-
tion. Such understanding may also create opportunities
for AI-human communication in the visual domain in real-
world applications, such as disaster relief.

However, the accuracy for both the non-ambiguous mod-
els and ambiguous models can be improved significantly.
In particular, if we treat the mode of human responses for
each point as the correct label, then the ”human accuracy”
on this dataset is 84.6%, significantly higher than our non-
ambiguous results. Humans can also do a very good job
of identifying ambiguous regions of an object depending on
size, point location, and location in image. This indicates
that our work, while promising, has room for improvement.

Future work would first focus on expanding the size of
the dataset, which is still relatively small (5-6 points per
image on average). This would likely provide a greater
boost in performance than training more sophisticated mod-
els. On the model-building side, we would continue to fo-
cus on models that characterize the ambiguity in the task.
One such direction of future work would be Bayesian deep
learning, which was addressed in related work. Training a
deep learning model with variational inference would allow
it to jointly learn the uncertainty of the task along with the
task itself, potentially leading to a better understanding of
ambiguity and higher classification accuracy. In the more
distant future, we might look to increase the current object-
part inference task by an order of complexity to better model
human pointing, although the task here is complex enough
and in many ways a new frontier in computer vision.
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Villena-Martinez, and José Garcı́a Rodrı́guez. A review on
deep learning techniques applied to semantic segmentation.
CoRR, abs/1704.06857, 2017.

[16] Y. Guan. Uncalibrated camera vision pointing recognition
for hci. In 2010 13th IEEE International Conference on
Computational Science and Engineering, pages 204–207,
Dec 2010.

[17] Bharath Hariharan, Pablo Arbelaez, Ross B. Girshick, and
Jitendra Malik. Simultaneous detection and segmentation.
CoRR, abs/1407.1808, 2014.

[18] Willian Hinthorn. Inferring intent from pointing with com-
puter vision. 2018.

[19] Rachel M. Holladay, Anca D. Dragan, and Siddhartha S.
Srinivasa. Legible robot pointing. The 23rd IEEE Interna-
tional Symposium on Robot and Human Interactive Commu-
nication, pages 217–223, 2014.

[20] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural In-

4328

https://keras.io


formation Processing Systems 30, pages 5574–5584. Curran
Associates, Inc., 2017.

[21] Guanbin Li and Yizhou Yu. Deep contrast learning for salient
object detection. CoRR, abs/1603.01976, 2016.

[22] Di Lin, Jifeng Dai, Jiaya Jia, Kaiming He, and Jian Sun.
Scribblesup: Scribble-supervised convolutional networks for
semantic segmentation. 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3159–3167,
2016.

[23] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 3431–3440, June 2015.

[24] Arjun Mani. Understanding and modeling human pointing
with computer vision. 2019.

[25] Pedro O. Pinheiro, Ronan Collobert, and Piotr Dollar. Learn-
ing to segment object candidates. In NIPS, 2015.

[26] Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr
Dollar. Learning to refine object segments. In ECCV, 2016.

[27] Aman Raj, Daniel Maturana, and Sebastian Scherer. Multi-
scale convolutional architecture for semantic segmentation.
Technical Report CMU-RI-TR-15-21, Carnegie Mellon Uni-
versity, Pittsburgh, PA, October 2015.

[28] Christian Rupprecht, Iro Laina, Robert DiPietro, Maximil-
ian Baust, Federico Tombari, Nassir Navab, and Gregory D
Hager. Learning in an uncertain world: Representing am-
biguity through multiple hypotheses. In Proceedings of the
IEEE International Conference on Computer Vision, pages
3591–3600, 2017.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015.

[30] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2015.

[31] R. Zhao, W. Ouyang, H. Li, and X. Wang. Saliency detection
by multi-context deep learning. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1265–1274, June 2015.

[32] W. Zhu, S. Liang, Y. Wei, and J. Sun. Saliency optimization
from robust background detection. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2814–
2821, June 2014.

4329


