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1 Introduction

An individual’s opinions are based on their own biases as well as those formed from their interaction with
the community. Furthermore, opinions evolve over time through continued interaction. A voter may pick
a candidate in an election through their own aligned interests, but may also be swayed by the opinions
of their friends. In most scenarios there exists a correct opinion, or a global ground truth. Even if the
individuals are well-informed (i.e. they’re likely to initially favor the correct opinion) certain dynamics or
network structures may lead to the majority holding an incorrect opinion. Particularly, situations where
individuals forgo their own opinion in favor of their friends’ opinions (known as an information cascade)
obstruct information aggregation.

In the present day, information cascades are especially present in the proliferation of misinformation
and fake-news through online social media platforms such as Facebook, Instagram, and Twitter. Ease of
communication and high levels of connectivity accelerate the propagation of distorted opinions. We are
especially motivated by the presence of “influencers” on these platforms. These are users who are connected
to an unusually large number of other users, paid to advertise products, services, and ideas. This leads to
our main motivating question: does the presence of “influencers” in a social network who possess incorrect
beliefs lead to the proliferation of these beliefs throughout the network?

We construct a family of graphs such that for any time after zero, the graph holds a majority incorrect
opinion despite each node being initially biased towards the correct opinion. This construction is primarily
motivated by intuitions about network structures that cause specific nodes to have a higher than usual
influence on the majority opinion. This and related work forms the body of our theoretical contribution.
We then verify several hypotheses empirically on real life social networks, which provide us insight into
the workings of majority dynamics and social networks as a whole. Interestingly, running a simulation of
majority dynamics on the graph of prominent Florentine families returns the Medici as the most influential
family, accurately reflecting their historic rise to prominence.

Our paper focuses on the model of synchronous majority dynamics. Initially, all actors have private beliefs
about a binary state of the world, biased towards the correct opinion with probability 1

2 + δ. In each time
step, all individuals synchronously update their vote to match the majority opinion of their friends, breaking
ties with their personal opinion. After several time-steps, a winning opinion is declared by performing a
majority vote on the population. This is clearly a näıve model, as a truly rational actor would update their
opinion through a weighted, or perhaps Bayesian, majority. However majority-dynamics are considered as a
more reliable model of relatively uninformed actors (such as voters), whereas Bayesian dynamics is preferred
for models of fully rational actors (such as financial traders) [4].

2 Related Work

Our work is related to a line of literature regarding information aggregation and retention in social network
graphs. Below we briefly describe most related works, limiting our scope to models that consider independent
initial beliefs biased towards the correct opinion with probability 1

2 + δ.
Banerjee [5] and Bikchandani, Hirshleifer, and Welch [6] first analyze social networks dynamics in a

Bayesian setting. This is a model where agents are fully rational and sequentially update their opinions
based on the opinions of their neighbors. Their seminal work first identifies information cascades in Bayesian
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dynamics. Subsequent works provide models that avoid information cascades [7], analyze structures that
result in correct consensus [8, 9], etc. While the goals of Bayesian dynamics align with our work on a
high-level, they are technically mostly unrelated as we only consider non-Bayesian dynamics.

An alternative line of study is concerned with non-Bayesian, heuristic information aggregation. The study
of Voter and DeGroot dynamics considers voters who update their opinion by copying a random neighbor
[12, 13] or through a weighted average [10, 11] of their neighbor’s reports. The work of Golub and Jackson
[14] is somewhat parallel to ours as they find that consensus occurs in a social network occurs if and only
if the most influential (i.e. highest degree) node becomes vanishingly less influential as the population size
diverges to infinity. Moreover, the work of Berger [15] resembles our work on adversarial graphs, where they
show that it is possible for the opinion of a small constant sized majority to dominate the global opinion of
the graph. However, unlike our model these works consider a continuous space of opinions and reports.

This paper focuses on the domain of majority dynamics where agents update their vote by declaring the
majority opinion of their neighbors. This paper extends the work of Mossel, Neeman, and Tamuz [1] who
investigate the graph-structures that result in ”efficient aggregation of information”. They give a condition
on the graph structure which ensures that the correct opinion is chosen with probability approaching 1 as
n −→ ∞, and provide examples of graphs where aggregation fails. Much of our theoretical work is built off
their work in this latter area. Tamuz and Tessler [2] study the retention of information and provide sufficient
conditions under which the ground truth can be reconstructed from the final state of the dynamics, through
any recovery method (not just a majority vote).

Our work is also heavily inspired by the results of Feldman et al. [3] and Bahrani et al. [4] who study
similar themes in asynchronous majority dynamics. Feldman et al. [3] claim that for networks that are sparse
and expansive, the population will converge to the correct opinion with high probability. Bahrani et al. [4]
study examples of structures that stabilize to a correct majority. However, we study synchronous rather than
asynchronous dynamics. As pointed out in [4], the difference between the synchronous and asynchronous
models is elucidated by the complete graph with n nodes. In synchronous dynamics, everyone announces
their private belief in the first step, and updates to the majority in the next step. Hence, a correct consensus
occurs with probability 1 − e−Ω(n). However, in asynchronous dynamics the entire population copies the
announcement of the first node and a correct majority occurs only with probability 1

2 + δ.

3 Setting and Exploration

3.1 Majority Dynamics

Our setting is as follows. Let V be a finite set of voters, organized in an undirected social network represented
by G = (V,E). Each edge in G represents a connection between two voters. Denote Nv as the set of neighbors
of v. We enforce that every vertex has an odd number of neighbors by creating a self-loop for every vertex
that would otherwise have an even number of neighbors.

There exist exactly two opinions in this setting. We denote Xv(t) ∈ {−1, 1} as the opinion of node v
at time t. In this setting, 1 is considered the correct opinion and -1 is considered incorrect. At time t = 0,
each voter is initialized with a random opinion Xv(t) ∈ {−1, 1} according to probability distribution Pδ,
where Pδ(1) = 1/2 + δ and Pδ(−1) = 1/2− δ. The initial opinions are chosen independently and identically
for all v ∈ V . Observe that once the initial opinions {Xv(0)}v∈V are chosen, the process is completely
deterministic.

At time t ∈ {0, 1, ..., T}, every voter v ∈ V updates their opinion to the majority opinion of their friends.

Xv(t) = sign
∑
u∈Nv

Xu(t− 1)

At some large time T , a majority-vote election takes place with result

YT = sign
∑
v∈V

Xv(T )

To avoid ties in the election, we assume that |V | is odd.
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Finally, following [1] we define the wisdom µδ(G,T ) of majority dynamics on G, up to time T as the
probability of recovering the ground truth through a majority vote at T :

µδ(G,T ) = Prδ [YT = 1]

We also use the term ”wisdom” more generally to refer to the probability of recovering the correct opinion,
even in a non-majority dynamics setting.

3.2 Degree

We begin with the following simple but useful lemma.

Lemma 3.1. Let µδ(G, 0) be the result of a majority vote at T=0. If Pr[Xv(0) = 1] = 1/2 + δ, then
µδ(G, 0)→ 1 as |V | → ∞, for all values of δ ∈ [0, 1

2 ].

Proof. The variables Xv(0) for all v are i.i.d. Bernoulli Random Variables with parameter p = 1/2+δ. Since
Y0 takes the majority of the voters at t = 0, Pr[Y0 = 1] ≥ 1 − e−O(n) by a simple Chernoff Bound. Thus,
the lemma holds.

Since each vertex updates using a similar majority vote on its neighbors, we observe from Lemma 3.1 that
as the degree of a node becomes large, the probability that it is wise goes to 1. This then drives the intuition
that higher average degree per node implies a higher probability of recovering the ground truth. While, this
is difficult to analyze theoretically beyond t = 1, we verify this intuition experimentally by examining the
wisdom of randomly generated d-regular graphs for varying values of d. The details and results are found in
Figure 1. Although there is an upward trend, the similarity across d indicates that adding edges to a graph
with fixed |V | does not significantly increase the probability of recovery.

Figure 1: Probability of recovery (or wisdom) as a function of d. The above plot shows the probability
of recovering the correct opinion from a d-regular graph using a majority vote, for various values of d. For
each value of d, we ran 1000 trials. In each trial, a random d-regular graph was generated, and each node
assigned an opinion randomly according to the protocol in 3.1. Synchronous majority dynamics were run for
50 iterations, following which the nodes were surveyed. The probability of recovery is simply estimated as
the proportion of trials with successful recovery. As we see from the graph, there is a slightly linear trend as
d increases, but all d result in a similar probability of convergence. This suggests that increasing the number
of edges in a graph for fixed |V | does not significantly increase the probability of recovery.
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3.3 High Degree

Another basic hypothesis is that nodes with high degree have a disproportionate ”influence” on the proba-
bility of recovery. Intuitively, this means that if v is a high-degree node, a higher than average set of nodes
probe v’s opinion. Thus, the opinions that high-degree nodes are seeded with are likely to significantly
affect the outcome of recovery. Our experiment, detailed in Figure 2, confirms this hypothesis. We see that
changing the initial opinions of high-degree nodes from correct to incorrect has much more of an effect on
the graph’s wisdom than changing the initial opinions of low-degree nodes. This idea is explored in more
detail in Section 5.3.

Figure 2: Degree as a proxy for influence. In each trial, we take a random Gn,m graph, where n = 25
and m = 100. The expected degree of this graph is (

∑
v deg(v))/|V | = 8. We first seed the opinions of

high-degree nodes (≥ 10) to 1 and then -1, and measure the drop in wisdom. We then separately the seed
the opinions of low-degree nodes (≤ 6) to 1 and then -1, and measure the drop in performance. Although
generally each graph contains more low-degree than high-degree nodes, the drop in wisdom is much more
significant for high-degree nodes, indicating their influence. Trials=1000, Iterations=50, δ = 0.1.

3.4 Convergence

By Lemma 3.1, a majority vote on any graph at t = 0 is likely to recover the correct opinion with high
probability. We would thus expect that the wisdom of most graphs would be high for any T (assuming large
enough n). However, for certain types of graphs, the nature of synchronous majority dynamics causes the
majority opinion of some graphs to oscillate between -1 and 1. Figure 3 shows this experimentally on a set
of standard graphs all with 256 nodes.

Examining Figure 3, we see oscillatory behavior for star and wheel graphs and convergence for all other
graphs. Theorem 3.2 below is a classical result from McCulloch and Pitts [16].

Theorem 3.2. For finite graphs, in the synchronous majority dynamics model, each voter’s opinion either
converges or, after some time, oscillates between -1 and 1 with period two.

The behavior of star graphs can be explained more generally via Lemma 3.3, which traces through
majority dynamics:

Lemma 3.3. Let Gn be a complete bipartite graph with sets S and T , where |S| = c and |T | = f(n) for some
strictly monotonically increasing function in n. As n → ∞, each voter’s opinion oscillates with a period of
2 with non-zero probability.
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Figure 3: Wisdom as a function of T. This figure shows the probability of recovering the correct opinion
across T for different types of graphs. The five graph types are the 256-node complete graph (blue), 256-
node wheel graph (orange), height-7 binary tree (green), 256-node cycle graph (red), and 256-node star graph
(purple). For each graph, we ran 1000 trials. A majority vote was taken after every time-step, for a total of
20 time-steps (initial seed with δ = 0.1. We can see from the graph that the complete, tree, and cycle graphs
converge immediately with high probability. However, the wisdom for the wheel and star graphs oscillate
with a period of 2.

Proof. Condition on the event that Xv(0) = −1 for all v ∈ S. This happens with probability (1 − p)c.
We observe that since the graph is bipartite, Xv(1) = −1 for all v ∈ T . In addition, since the graph is
fully-connected, by Lemma 3.1 each vertex in S will be 1 at t = 1. Thus, each vertex flips its opinion. At
time t = 2, since every vertex in S is 1 in the previous iteration and vice versa for T , each voter’s opinion
will flip again. More generally, each voter’s opinion flips every iteration such that Xv(t) = Xv(t+ 2).

Since n → ∞, f(n) > c. Thus, since all vertices in T are incorrect at t = 1, the incorrect opinion will
be recovered. More generally, we observe that the graph will be majority correct for even t and majority
incorrect for odd t. In other words, YT = YT+2. Since the probability that Xv(0) = −1 for all v ∈ S is
non-zero and independent of n, the majority opinion will oscillate with non-zero probability.

Note that the star graph is a special case of Lemma 4.2 where |S| = 1 and |T | = n− 1. Thus, majority
dynamics oscillates with probability 1− p.

4 Adversarial Graphs

An interesting question to ask is whether there exist a sequence of graphs whose size goes to infinity, for
whom the probability of recovery is strictly less than 1 for all T ≥ 1. Note that it takes careful effort to
design a graph such that this theorem holds, as the graph’s wisdom at T = 0 converges to 1 as n → ∞.
Theorem 4.1 below extends the work of Mossel et al. [1], as explained below.

Theorem 4.1. For any δ > 0, there exists a sequence of graphs Gn, where the size converges to infinity,
such that

sup
n

sup
T≥1

Pδ[YT = 1] < 1. (1)
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Proof. We offer a constructive proof. Let p = 1
2 + δ be the probability of any node holding the opinion 1.

Let G
(c)
n = (A∪B,E) be a family of graphs defined by some constant c, where |A| = c/(1− p)− (c− 1) and

|B| = n(c/(1− p) + 1). For simplicity, we assume that 1/(1− p) is an integer.
Following [1], let each vertex in A be connected to each vertex in B. No nodes in A are connected to

each other. The nodes of B are arranged in n cliques, each of size c/(1− p) + 1. There are no edges between
the cliques, and each vertex in B has a self-loop. Intuitively, this graph is set up such that the nodes in A
act as ”influencers” for the population in B, that is the number of vertices that probe A’s opinion is large
relative to its size.

For the rest of the proof, let us condition on the event that all the nodes in A are initially wrong, i.e.
Xa(0) = −1 for all a ∈ A. This happens with probability (1− p)|A|.

Consider a clique C in B. Each vertex in C is connected to c/(1−p)+1 vertices in C and c/(1−p)−(c−1)
vertices in A. Thus, if bc/2c+ 1 vertices in C vote -1 at t = 0, then every voter in the clique will vote -1 at
t = 1. This is because each v ∈ C is connected to c more nodes in C than in A. If bc/2c+ 1 nodes in C have
the wrong opinion then a strict majority of v’s neighbors will be wrong at t = 0.

It is now incumbent upon us to find the probability that bc/2c + 1 nodes in C are wrong at t = 0. We
do this through the following lemma.

Lemma 4.2. For any clique C ⊆ V , let E be the event that bc/2c+ 1 nodes in C are wrong at t = 0. Then
P [E] ≥ 1− 3/e2.

Proof. We observe that the probability of this event not occurring is

bc/2c∑
i=0

( c
1−p + 1

i

)
(1− p)ip

c
1−p +1−i. (2)

Initially, this seems like a difficult expression to make progress on. However, consider the observation
that p1/(1−p) → 1/e as p → 1, approaching from below. Thus, we reason that the above probability grows
with p. We therefore examine the limiting behavior as p → 1. As we shall see, this provides us with a
rigorous argument for the function growing with p, since the middle term, the only term that does not grow
with p, cancels.

Consider each term in the sum. As p → 1, the right sub-term goes to 1/ec. Meanwhile, the first two
sub-terms approaches the following:

(
c/(1− p) + 1

i

)
(1− p)i =

(1− p)i

i!

i−1∏
j=0

c

1− p
+ 1− j

→ 1

i!
ci.

Note, as mentioned above, that the term (1− p)i disappears. Thus, as p→ 1, the sum converges to

bc/2c∑
i=0

ci

i!ec
. (3)

Since the denominator dominates the numerator, this goes to 0 very fast as a function of c (this is verified
analytically). Thus, the maximum value of this expression is for c = 2, where it equals 3/e2. Since examining
the limiting behavior as p→ 1 gives an upper bound on the probability of ¬E, P [¬E] ≤ 3/e2 and therefore
P [E] ≥ 1− 3/e2 for any c.

With Lemma 4.3, we can now complete the proof. The probability that any one clique will vote all
incorrect at t = 1 is at least 1− 3/e2 ≈ 0.594. Thus, the number of cliques that will incorrectly vote at t=1
dominates the distribution Binom(n, 0.59). By Hoeffding’s inequality, the probability that a majority of the
cliques will vote -1 at t = 1 is at least 1− exp(−0.01n). Once this happens, those cliques will all vote -1 for
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t ≥ 2. In addition, every node in A will also vote -1 for t ≥ 2. Therefore, for all t ≥ 2, a majority vote will
result in the incorrect opinion.

Finally, observe that the event that all of A initially votes -1 is independent from the event that a majority
of cliques have enough voters that vote -1. Thus, the probability that both events occur is (1 − p)|A|(1 −
exp(0.01)), which is positive and independent of n. Thus, information does not aggregate with a non-zero

probability independent of the size of the graph, and the theorem is proved for the family of graphs G
(c)
n

parametrized by c.

The authors in [1] prove this theorem for the same underlying topology of graphs, with c = 1. Part of
the reasoning is similar, but since we prove the theorem for all c, our proof significantly diverges. One might
ask, other than generality, why proving for all c is useful. Our answer is that in [1], the authors restrict the
size of A, the ”influencers”, to be approximately the size of each clique. However, a more realistic model of
social networks is where you have a smaller group of influencers targeting a number of larger communities.
By extending the proof to all c, we show that if the number of influencers is any constant number less than
the size of each community, the graph will still reach the incorrect opinion with non-zero probability. Our
class of graphs more closely approximates the topology of a real-life social network.

The graph described in the proof for Theorem 4.1 highlights an interesting method to drive the majority
opinion of a graph away from the ground truth by seeding the opinion of a small group of ”influencers” to
be false. The below corollary begins to pave the way for designing a larger set of adversarial graphs. First,
we prove the following lemma:

Lemma 4.3. For any clique C ⊆ G
(c)
n , let E be the event that k ≤ c nodes in C are wrong at t = 0. For

c ≤ 100, P [E] > 0.5.

Proof. Proceed similarly to the proof in Lemma 4.2. Now, the probability of failure is

c−1∑
i=0

ci

i!ec
. (4)

This sum is difficult to analyze, but experimentally it takes on values < 0.5 for large c. For example,
when c = 100, the value of the sum is 0.487. Evaluation beyond this point is numerically difficult.

In the following proof, we assume the above lemma holds for all c. We are guaranteed that it holds for
large c (≤ 100).

Corollary 4.3.1. Modify the structure of the graph G
(c)
n from Theorem 4.1, by attaching a subgraph Hc to

each clique C ∈ B such that |DC | ≤ c − 1, where Dc is the set of vertices in Hc with at least one neighbor
in C. If each node in DC is connected to more vertices in C than not, then all vertices in A ∪ C ∪DC hold
the incorrect opinion for t ≥ 2 with non-zero probability independent of |V |.

Proof. With the condition that every vertex v ∈ DC is connected to more nodes in C than, elsewhere in the
graph, if all vertices in Nv ∩ C hold the same opinion at time t, then all vertices in D will update to hold
the corresponding opinion at the next time step. Therefore, WLOG we can say that D only has neighbors
within C.

Following the proof for Theorem 4.1, we condition on the event that all vertices in A and k nodes in
C hold the wrong opinion (i.e. -1). Let us consider the worst case where the vertices in C and DC have
maximal mutual influence while those in A and D have minimal mutual influence - i.e. each vertex in DC is
connected to every vertex in C and none in A. This is the worst case since each node in DC could be seeded
to 0, and we condition on the event that all vertices in A and k nodes in C hold the wrong opinion (i.e. -1).

At t = 0, the members of C have at least |A| + k = |C| − c + k neighbors that vote -1 and at most
|C| − k + |DC | neighbors that vote 1. Therefore, to ensure that all members of C vote -1 at the next time
step (t = 1), we must have that 2k > |DC | + c. At t = 2, the members of C vote -1 if |C| > |A| + |DC | =
|C| − c+ d =⇒ |D| < c. Together, both inequalities give that k > |DC |.
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Finally, we use Lemma 4.3 that says that for k ≤ c, P [E] > 1/2 (E as defined in the lemma). Thus,
by Hoeffding’s Inequality the majority of cliques will be all -1 at time t = 1 with non-zero probability
independent of |V |. Thus, all of A will be -1 at time t = 2. We have previously argued that all of C and DC

will be -1 at time t = 2. Thus, the lemma holds.

Corollary 4.3.1 proposes a compelling method to “attack” the majority opinion of the graph, by seeding
the initial opinion of only a small constant sized set of nodes. Section 4.1 walks through an example of such
an attack.

4.1 An Example: Trees

Consider a hierarchical social network modeled as a tree with height h; organized such that the leaf nodes
belonging to each parent form a clique of size 2/(1 − p) + 1. Given a constant sized set of nodes A with
|A| = 2/(1 − p) − 1 seeded with an initial opinion of −1 (i.e. the opposite of the ground-truth), Corollary
4.3.1 implies that any clique of leaf nodes C and their corresponding parent DC are likely to entirely hold
the opinion −1 after two time-steps, if A is fully connected to all C. Hence, by connecting the adversarial
set A to all the leaf nodes in the social network, we can say w.h.p. that the two bottom-most layers of the
tree hold the false opinion after two time-steps.

Once this happens, the false opinion rapidly propagates up the tree with high probability, as each parent
node with more one child adopts the opinion of its children if they all agree. Therefore, after only h + 1
time-steps, the root node would be infected with the false opinion w.h.p. This emphasizes a way to not only
shift the bias of a majority vote away from the ground-truth within only a few time-steps, but also infect
the ”most-powerful” node in the hierarchy (analogous to the root node of a tree).

5 Real Social Networks

In the following sections, we run several experiments on well-known real-life social networks. Each experiment
is centered around a different idea and provides unique insight and intuition. We use the following four graphs
in our experiments:

• Karate Club Graph: A social network representing a university karate club. 34 nodes, edges docu-
ment links between pairs of members who interacted outside the club.

• Florentine Families Graph: 15 nodes, each represents a prominent Florentine family. Edges indicate
marriage links.

• Davis Southern Women Graph: 18 nodes, each represents a Southern woman. Edges indicate
co-occurrence at social events. The graph is bipartite.

• Connected Caveman Graph: Not a real-life social network, but a realistic model of a real-life social
network. Defined by n, k, graph contains n cliques of size k. For each clique, an edge is selected at
random and reconnected to another clique.

The topologies of each of these graphs are included in the appendix for reference.

5.1 Thresholding

After T iterations, majority dynamics attempts to recover the correct opinion of the graph by taking the
opinion held by the majority of voters. Mossel et al. [1] proposed the idea of establishing higher or lower
thresholds for agreement. Here, the recovered opinion is 1 if for some threshold α ∈ [0, 1],

∑
v∈G Iv ≥ α|V |,

where Iv is an indicator variable indicating whether the opinion of the v-th node is 1. In other words, at
least an α proportion of the nodes must be correct to recover the correct opinion. Observe that majority
dynamics is simply a special case with α = 0.5.

Most graphs will have reasonably high wisdom under majority dynamics, because they are already rea-
sonably wise at t = 0. Studying the probability of recovery here is interesting because it reveals the extent
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to which a graph achieves consensus. If it has achieved complete consensus on the correct opinion, then no
matter the value of α it will recover correctly. Thus, the sensitivity of wisdom to α is a good measure of
consensus.

Figure 4 shows how recovery probability varies as a function of α for four social network graphs. Recovery
probability predictably drops, but for the three social networks it is still ≈ 0.5 even for α = 0.99, indicating
that consensus is reached half the time. However, recovery probability drops drastically for the connected
caveman graph. One likely theory is that the less easily a graph can be divided into communities (clusters
of nodes with high internal degree and low external degree), the more likely that it will achieve consensus.
Small communities could be all or largely wrong, in which case the rest of the graph cannot correct them.
This hypothesis is bolstered by the fact that a complete graph of size 100 has a wisdom of 0.974, while a
10,10-connected caveman graph has a wisdom of 0.007. Examining patterns of disagreement in the connected
caveman graph reveals that disagreement occurs at a clique-level (entire cliques agree or disagree), which is
what we would expect.

Figure 4: Probability of recovery as a function of α. The above plot varies the threshold α and
displays the wisdom of all four graphs for each value of α. Interestingly, while the three real-life social
networks perform reasonably for high α, the performance of the connected caveman graph plummets. This
may be well-understood by the fact that the connected caveman graph contains a high degree of community
structure. Nodes in a community tend to converge to the same opinion independent of the rest of the graph.
As always, 1000 trials, 50 iterations, and δ = 0.1.

5.2 Seeding

We return to the ideas of Section 3.3, that the opinions of high-degree nodes have more influence than those
of low-degree nodes. We experiment with seeding nodes according to different probability distributions than
Pδ. In particular, we compare Pδ to two PDs that favor placing the correct opinion on high-degree nodes
and low-degree nodes respectively. These are defined as the following:

Phd(vop = 1) = σ(deg(v)−m(G)), (5)

Pld(vop = 1) = σ(m(G)− deg(v)), (6)
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where σ is the sigmoid function and m(G) is a function that computes the median degree of a graph.
Figure 5 shows the results. The temperature of the sigmoid was adjusted to create roughly equal numbers of
initially correct nodes for each graph - however, the number of nodes initially correct is still a confounding
factor (Pδ tends to set more initially correct). Despite this, we see that low-degree seeding does much worse
than random or high-degree seeding, and high-degree setting generally does better than random seeding.
This indicates both the importance of the initial seeding, as well as the usefulness of high-degree as a proxy
for influence.

Figure 5: Probability of recovery for different seeding strategies. The above plot shows how the
wisdom of each graph changes as the seeding strategy changes from favoring high-degree nodes to Pδ to
favoring low-degree nodes. Both the former polling strategies do significantly better than favoring low-
degree nodes, and generally high-degree node seeding does slightly better than random seeding (the noise is
due to the random method usually seeding more nodes to 1). Trials=1000, Iterations=50, δ = 0.1.

5.3 Influence

The process of seeding in the paper has been guided by “influential” nodes. These are nodes whose opinions
have a significant effect on the opinions on the rest of the network. Our proxy for influence thus far has been
degree. However, we can measure the influence of a node through the following method: seed the node’s
opinion to -1, and then to 1, and observe how the wisdom changes. A high-influence node should see a
significant difference, with the caveat that this approach works most effectively for smaller graphs where the
effect of a single node can be significant.

To make this approach more concrete, for each trial we consider every vertex v. We set Xv(0) = 1 and
attempt recovery, and then set Xv(0) = −1 and do the same, with all other nodes seeded as usual. The
wisdom is then computed across all the trials. Finally, the influence of a node is the percent change in the
wisdom, or

Iv =
P [YT = 1|Xv(0) = 1]− P [YT = 1|Xv(0) = −1]

P [YT = 1|Xv(0) = −1]
. (7)
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5.3.1 Florentine Families Graph

The Florentine Families Graph is a particularly interesting case for this approach given its history. The
Medici family, although not the most wealthy or possessing the most seats in the legislature, eventually
rose to power. This is perhaps well-understood through this social network, which reveals that the Medici
Family were central in the graph and had the highest number of connections among any of the families. The
question is whether the process of majority dynamics can successfully identify the Medici Family as the most
influential node in the graph.

Examining Figure 6 (which contains more details) reveals that the method was successful. Nodes are
colored by influence from dark to bright, and the Medici family stands out as significantly more influential
than any other family. In the graph, the Medici node not only has a high degree, but its neighbors have
comparatively low degree relative to median degree in the graph. This implies that the Medici node’s
opinion will have a high level of influence on the opinions of several nodes. This idea suggests that influence
in majority dynamics is more complex than high degree. One possibility is that a high-influence node v must
have a low-degree path to a high number of vertices w (

∏
u∈P (v,w) deg(u) ≤ k). Similar ideas have been

formalized in [4] for asynchronous dynamics.
The success of majority dynamics here suggests that ”influence” in majority dynamics might indicate

the importance of a node in a social network. It is intuitive that nodes which influence the opinions of
other nodes might be considered more important. Although there are other measures of importance (e.g.
betweenness centrality, which also does an excellent job on this graph), majority dynamics might prove useful
for such an analysis. This could be a future direction of investigation.

This same process was also run on the Karate Club graph. Since the analysis and conclusions are similar,
we choose not to include the graph.

Figure 6: Graph of Florentine families. Each node is colored by its influence (dark to light). The Medici
family has a much higher influence any other family, which might explain its rise to prominence.
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Appendix: Diagrams of the Real Life Social Network Graphs

Figure 7: Karate Club Graph This diagram represents a social network of members at a university karate
club. The graph has 34 nodes, and the edges between nodes correspond to members who interacted outside
the club.

Figure 8: Florentine Families Graph This diagram shows the full Florentine Families Graph. The graph
has 15 nodes, each corresponding to a prominent Florentine family. The edges indicate marriage links.
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Figure 9: Davis Southern Women Graph This diagram shows the full Davis Southern Women Graph.
The graph has 18 nodes, each of which corresponds to a Southern woman. The edges indicate co-occurence
at social events. This is a bipartite graph.

Figure 10: 4x5 Connected Caveman Graph This is a simplified version of the connected-caveman graph
graph used in section 5. This topology describes 4 cliques with 5 vertices each. An edge has been removed
from each clique and used to connect to a neighboring clique along a central cycle, such that all 4 cliques
form an unbroken loop. Connected caveman graphs are deterministic and perfect.
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