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Abstract - In this paper, we propose a generalization of 
the level set segmentation approach by supplying a 
novel method for adaptive estimation of active contour 
parameters. The presented segmentation method is fully 
automatic once the lesion has been detected. First, the 
location of the level set contour relative to the lesion is 
estimated using a convolutional neural network (CNN). 
The CNN has two convolutional layers for feature 
extraction, which lead into dense layers for 
classification. Second, the output CNN probabilities are 
then used to adaptively calculate the parameters of the 
active contour functional during the segmentation 
process. Finally, the adaptive window size surrounding 
each contour point is re-estimated by an iterative 
process that considers lesion size and spatial texture. We 
demonstrate the capabilities of our method on a dataset 
of 164 MRI and 112 CT images of liver lesions that 
includes low contrast and heterogeneous lesions as well 
as noisy images. To illustrate the strength of our 
method, we evaluated it against state of the art CNN-
based and active contour techniques. For all cases, our 
method, as assessed by Dice similarity coefficients, 
performed significantly better than currently available 
methods. An average Dice improvement of 0.27 was 
found across the entire dataset over all comparisons. We 
also analyzed two challenging subsets of lesions and 
obtained a significant Dice improvement of 𝟎.𝟐𝟒 with 
our method (p < 0.001, Wilcoxon). 

Index Terms—Adaptive parameters, active contours, 
convolutional neural network, image segmentation 

I. INTRODUCTION 
EDICAL image segmentation is an important step in 
clinical diagnosis, tumor growth prediction, and 

radiotherapy planning. The rapid growth of medical data 
motivates the need for automated, computer-based 
segmentation methods in place of manual tracing. 
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Level set models are a popular method used widely in curve 
evolution applications, specifically for medical image 
segmentation [1]-[11]. These methods follow a non-
parametric deformable model, generate a continuous 
boundary of an object, and are able to handle variations in 
shape, image noise, heterogeneity, and discontinuous object 
boundaries [7]. Such challenging characteristics are 
common in medical images.  

Contour initialization is an important factor in the 
accuracy of local active contour models. A more accurate 
initial contour, closer to the object to be segmented, leads to 
lower dependence of the segmentation on level set 
parameters. Manual drawing by a trained user is currently 
the most common method for contour initialization. 
However, manual initialization is an extremely tedious and 
error-prone process. While approaches that simplify the 
manual initialization process have been suggested in [8]–
[10], other researchers have proposed automatic 
initialization methods that analyze the external force field 
[11]–[14]. Initialization methods can utilize active shape 
models, but these methods need a large and representative 
training set [15]-[18]. Other methods use fuzzy clustering to 
facilitate level set segmentation [19]-[22]. Such algorithms 
employ fuzzy clustering based on image intensities for an 
initial segmentation and use level set methods for object 
refinement by tracking boundary variation.  

Related work 
Li et al. [19] show that an inappropriate choice of level 

set parameters may lead to an inferior segmentation 
regardless of initialization. Most often, level set 
segmentation requires pre-defined parameters of the energy 
functional, while local frameworks also require a pre-
defined window size [23]-[24]. Each optional value for a 
specific parameter is tested over a series of images and 
remains the same for the entire database of images. New 
images having different spatial statistics may require 
additional experiments to find the best-fitted parameter set, 
local window size and energy functional parameters. As a 
result, choosing a fixed set of parameters by trial and error 
is a time consuming and laborious process. Moreover, when 
the images contain substantial diversity of spatial statistics, 
pre-defining a set of fixed parameters may result in non-
optimal segmentation performance for all images. In 
addition, the user does not typically have the experience or 
time to tune a large number of parameters optimally. For 
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this reason, an adaptive solution is highly desirable. A 
varied set of parameters defined according to spatial 
information has a higher chance of providing a more 
accurate segmentation.  

A few works present a choice of one local window size 
surrounding each contour point from a range of optional 
sizes [25]-[27]. In our previous work [28], we presented a 
novel method to define the local window adaptively with no 
dependence on a range of input sizes.  

Other works provide an algorithm to estimate parameters 
for the level set energy functional. Li et al. [19] propose a 
fuzzy level set algorithm in which the level set parameters 
are initialized using a spatial fuzzy clustering approach. 
However, the parameters are only evaluated at the 
beginning of the segmentation process and remain constant 
throughout the whole process. In addition, the performance 
quality of fuzzy C-means is sensitive to noise, resulting in 
generally poorer segmentation. Oliviera et al. [29] present a 
solution for liver segmentation based on a deformable 
model, in which parameters are adjusted via a genetic 
algorithm. The genetic algorithm was used to choose the 
best combination of parameters from analysis of the 
training set, but all segmentations in the test dataset were 
conducted using the same parameters. Thus, this method 
may not be appropriate for highly diverse types of lesions. 
The authors in [29] also made two assumptions in their 
analysis: 1) the initialization is reasonably accurate; and 2) 
the liver is spatially homogeneous. Moreover, the authors 
use their method to segment the liver itself rather than a 
lesion dataset. The diversity of screened organs is typically 
much lower than the diversity that characterizes lesions. 
Baillard et al. [30] define the problem of parameter tuning 
as a classification of each point along the contour. That is, 
if a point belongs to the object, then the surface should 
locally extend, and if not, the surface should locally 
contract. This classification is performed by maximizing the 
posterior segmentation probability [30]. However, the 
authors only consider the direction of the curve evolution 
and not its magnitude, which is critical especially in 
heterogeneous regions, wherein convergence into local 
minima should be prevented. Thus, both [29] and [30] are 
likely to have limited performance for highly diverse 
datasets, given the limited amount of information that is 
incorporated.  
In this paper, we propose a significant improvement of the 
level set segmentation method. We present an adaptive 
method to estimate the parameters for the level set energy 
functional separately for each case and over iterations. 
When combined with estimation of an adaptive window 
size surrounding each contour point as suggested in our 
previous paper [28], we supply a generalization of the 
segmentation process, applying the same model equations 
and deep learning architecture for any given dataset. Our 
method is a multi-stage process. First, we provide a novel 
method to estimate the parameters of the energy functional. 
A convolutional neural network (CNN) is used to identify 
the location of the zero level set contour in relation to the 

lesion. The output probabilities of the CNN are then used to 
calculate the level set parameters. Second, the adaptive 
window size is re-estimated by an iterative process that 
considers the scale of the lesion, local and global texture 
statistics, and minimization of the cost function over 
iterations. Our method requires only a single input point 
representing the approximate center of the detected lesion. 
There is no need of a more accurate initial contour as is 
typically supplied, automatically or manually, for local 
analysis. Contrary to current local active contour 
frameworks, our method has little to no dependence on 
accurate initialization and does not include any assumptions 
about lesion characteristics. Thus, it may perform well with 
highly diverse datasets that include low contrast, noisy, and 
heterogeneous lesions. Here, we study the effects of 
adaptive parameters on segmentation performance, 
demonstrating the capabilities of our method by analyzing 
276 images of liver lesions generated using two different 
modalities, MRI and CT. Lesions with substantially 
different spatial texture were present in both MRI and CT 
images. Finally, we performed extensive comparisons with 
both active contour and machine learning techniques, which 
showed the strength of our method.   
To the best of our knowledge, we are the first to develop a 
fully adaptive framework for deformable model 
segmentation, resulting in a far more general segmentation 
solution than methods available to date. 

The paper is organized as follows. In Section II, we 
define the global and the local energies that are the basis for 
this work. Section III presents our method for evaluating 
the level set parameters. In Sections IV and V, we discuss 
key ideas regarding experimentation and implementation 
details. Analysis of the segmentation results and 
comparison with other methods are presented in Section VI. 
Finally, Section VII discusses the results and makes some 
concluding remarks. 

II. BACKGROUND 
We evaluated our proposed adaptive framework with two 
different energy models: the piecewise constant model and 
the mean separation model. Details of each model follow.  

A. Piecewise Constant (PC) Model  
The piecewise constant (PC) model presented in [3] 

assumes an image I to be formed by two areas of distinct 
intensities (the object area and the background area), with 
uniform intensities within each area. Let Mu be the mean 
object intensity and Mv be the mean background intensity of 
the image. We set Ω as a bounded subset in R2 and I(x, y) as 
the coordinates of a point on image I. Let ϕ(x, y) be a signed 
distance map and ∇ be the first variation of the energy with 
respect to ϕ(x, y). Let C be a parameterized closed contour 
curve in Ω represented by the zero level set (ZLS), C = {(x, 
y) | ϕ(x, y) = 0}. We use the Heaviside function, 

Hφ(x, y) =
1, φ(x, y) >ε
0, φ(x, y) < −ε
h(x, y), φ(x, y) < ε

⎧

⎨
⎪

⎩
⎪

(1)  
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where ε is a constant and 
 
Then, Hϕ(x, y) gives the interior region of C, and (1- Hϕ(x, 
y)) gives the exterior region. The narrow band around the 
ZLS contour C is represented by the derivative of Hϕ(x, y) 
and a smooth approximate version of Dirac delta 𝛿𝜙 𝑥, 𝑦 . 
Putting all of this together, the energy function for the 
piecewise constant model FPC(Mu, Mv, ϕ) can then be 
written as:  
 
FPC (Mu,Mv,φ) = µ δφ(x, y) ∇φ(x, y)

Ω

∫ dxdy

+λ1 I(x, y)−Mu( )2 Hφ(x, y)
Ω

∫ dxdy

+λ2 I(x, y)−Mv( )2 (1−Hφ(x, y)
Ω

∫ )dxdy (2)

 

 
where µ is a predefined constant that affects the smoothness 
of the curve, and λ1 and λ2 are weighting parameters that 
affect the direction and magnitude of the contour evolution. 
By applying a local version of the PC model, Mu and Mv 
can be replaced by their local equivalent terms, mu and mv. 
In that case, these terms will represent the local means of a 
region surrounding each contour point [24].  

B. Mean Separation (MS) Model  
The mean separation (MS) model in [31] assumes that 

the object and its background should have maximal 
separation between mean intensities. We define Ωn ∈ R2 as 
the local version of Ω that represents only the narrow-band 
points [24]. As in the PC model above, we use the 
Heaviside function to determine the area of the local 
interior (Au) and exterior (Av) regions surrounding a contour  
 point as: 

𝐴! = 𝐻𝜙 𝑥, 𝑦 𝑑𝑥 𝑑𝑦  ,
Ω!

  𝐴! = 1 − 𝐻𝜙 𝑥, 𝑦 𝑑𝑥 𝑑𝑦    (3) 
Ω!

 

 
This gives us the following energy function for the local 
mean separation model FMS(mu, mv, ϕ): 
 
FMS (mu,mv,φ) = µ δφ(x, y) ∇φ(x, y)

Ωn

∫ dxdy

+λ1
I(x, y)−mu( )2

Au
Hφ(x, y)

Ωn

∫ dxdy

+λ2
I(x, y)−mv( )2

Av
(1−Hφ(x, y)

Ωn

∫ )dxdy (4)

 

 

The MS energy is minimized when the difference between 
𝑚! and 𝑚! is maximized. In some cases, the MS model 
may provide better results than the PC model due to the 
focus on maximal contrast between the interior and the 
exterior regions, without any restrictions on region 
homogeneity. This allows the MS model to find image 
edges effectively without considering the uniformity of the 

internal or external regions. 

III. THE PROPOSED METHOD 
The proposed method involves a two-step, iterative process 
(Fig. 1) that supplies an Adaptive estimation of the active 
Contour Parameters (ACP) via machine learning - based 
evaluation.  

A. Adaptive Energy Functional Parameters 
Level set curve evolution depends on three weighting 

parameters. µ controls the smoothness of the contour and is 
fixed at µ = 0.1 throughout the segmentation process. The 
level set framework is relatively insensitive to changes in 
the value of µ. On the other hand, λ1 and λ2 play a key role 
in the direction and magnitude of curve evolution. Curve 
evolution depends not only on the absolute values of these 
parameters, but also on their ratio. First, a convolutional 
neural network (CNN) is used to estimate the location of the 
ZLS contour relative to the lesion. Three possible locations 
are considered: outside, near, or inside the lesion boundary. 
The CNN outputs a probability for each of three classes: 
inside the lesion and far from its boundaries (p1), close to 
the boundaries of the lesion (p2), or outside the lesion and 
far away from its boundaries (p3) (Fig. 2). In the second 
step, we use the CNN probabilities of the three classes 
to set the weighting parameters λ1 and λ2 of the energy 
functional. These parameters .are calculated using the 
following equations: 

 

λ1 = exp
1+ p2 + p3
1+ p2 + p1

⎛

⎝
⎜

⎞

⎠
⎟, λ2 = exp

1+ p2 + p1
1+ p2 + p3

⎛

⎝
⎜

⎞

⎠
⎟, (5)  

 
If p3 > p1, then λ1 > λ2 and the contour has a tendency to 
contract. Conversely, if p1 > p3, then λ2 > λ1, the third term 
of the energy eqs. 2+4 (difference of the point grey level 
from mv) is weighted more heavily, and the contour tends to 
expand. Probability p2 serves as a stabilizer and a restraining 
factor. That is, if the ZLS contour is located close to the 
lesion’s boundaries, p2 >> p1, p3 and λ1 ≈ λ2. As a result, both 
energies, related to the regions inside and outside the 
contour, are weighted equally. The exponential function is 
used to increase the range of values and ratios that λ1 and 
λ2 can take on. 

 

 

Fig. 1. The whole pipeline for learning the level set parameters. 

 
1) CNN architecture 

The strength of the proposed method is its generalization to 
a variety of segmentation challenges. Therefore, we 
propose a generalized architecture for the CNN. 

Initialize the 
contour 

Predict the 
contour’s location 

Extract probabilities 
(p1, p2, p3) 

Calculate level set 
parameters (λ1, λ2) 

Evolve level set 
contour  

h(x, y) = 1
2
1+ φ(x, y)

ε
+
1
π
sin πφ(x, y)

ε

⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎩

⎫
⎬
⎭
.
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Fig. 2. Three optional locations of the ZLS contour. a) contour inside the 
lesion (p1=0.83, p2=0.12, p3=0.05), b) contour near the lesion’s boundaries  
(p1=0.06, p2=0.78, p3=0.16), c) contour outside the lesion (p1=0.01, 
p2=0.09, p3=0.90). Magenta is the ZLS contour, green is radiologist 
annotation.  
 

Our architecture consists of two convolutional layers 
followed by two fully connected layers, including the final 
three-node layer (Fig. 3). Both convolutional layers use 5 x 5 
kernels, as this size outperformed other kernel sizes. We set 
the depths of the first and second convolutional layers to 20 
and 100 kernels, respectively. The depths and filter size can 
be tuned if necessary, but these parameters were chosen 
based on examination of highly diverse lesion datasets. 
Figure 4 presents a visualization of the convolutional 
layers. The proposed method uses the raw images as feature 
maps. Each convolutional block of our CNN is composed 
of three layers (Fig. 5): a filter bank layer, a nonlinearity 
layer (Leaky Rectified Linear Units (ReLU)), and a feature-
pooling layer. 

A non-linear activation function is applied to the outputs 
of the convolutional layer [32]. The ReLU activation 
function f(x) = max(0, x) has recently become the gold 
standard for training deep neural networks due to its fast 
convergence [32]. Glorot et al. [33] argued that the ReLU 
function’s hard zero limit mimics the sparse activation of 
neurons in the brain. However, ReLU units are potentially 
disadvantageous because early zeroing can mean that a 
particular neuron will not activate for the remainder of 
training. Leaky ReLU units alleviate this problem by 
allowing a small, non-zero gradient if the unit is not active:  

 

f (x) =
x, x > 0
0.01x, else (6)
⎧
⎨
⎩

 

 
Leaky ReLU activation reduces over-fitting and leads to 
lower error rates while training.  
Max pooling is the final step of the convolutional block. We 
take a 2x2 pixel sub-region from the Leaky ReLU output 
and represent the region by its maximum value, thus reducing  

the dimensionality of the dataset. Although we 
experimented with removing the pooling layers from the 
network, we did not see a noticeable improvement in 
performance at the cost of increased training time. 

a)     b)  

c)     d)  
Fig. 4. Visualizing the convolutional layers of the CNN. a) shows an input 
image masked by a ZLS contour that is located outside and far away from 
the lesion (p3). b) Learned filters during the first convolutional layer. c) 
and d) show outputs of different filter convolutions from the second 
convolutional layer.  

 

Fig. 5. A sample convolutional block with leaky ReLU and max pooling. 
The example input is a stack of images (100 x 100 pixels), which are then 
convolved by 5 x 5 kernels to create new feature maps (96 x 96 pixels). 
Leaky ReLU activation is applied after convolution and 2 x 2 max pooling 
reduces the size by a factor of 4.  
 
2) Training the CNN 
The CNN attempts to minimize the following cost function: 

 L(w) = 1
n
ℓ(z, f (x,w))+η

2
w 2

i=1

n

∑ , (7)  

for a labeled training set (x1, z1), ... , (xn, zn) and weights w = 
(w1, ... , wL), and some loss function ℓ. L2-regularization 
penalizes the size of the weights in the model, where 
𝜂 = 0.005  is the coefficient of regularization. Stochastic 
gradient descent with momentum is applied to update the 
weights (wi) of the network [32]: 

vi+1 = ςvi −α∇wi −ηwi

wi+1 = wi +vi+1 (8)
 

Fig. 3. CNN architecture. The input is an N x N image of a lesion masked by a ZLS contour. Two convolutional ‘blocks’ follow the input with 5 
x 5 filters and 2 x 2 max pooling. Two fully connected (FC) layers with 300 and 3 nodes respectively follow the convolutional layers. The 
dimension of the feature map reduces from N to !

!
− 2 after each convolutional layer. FC layers take the output of the feature extraction layers 

and perform classification. 
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where i is the iteration index, v is the previous gradient, 𝜂 is 
the same regularization coefficient that appears in (7) and 
ς is the momentum. The latter was initialized to 0.95 [32]. 
Momentum-based methods damp the gradient and provide 
better convergence rates for deep networks. Xavier 
initialization is used to initialize the weights in each layer 
from a normal distribution of N(0, 10-4) [32]. This 
initialization ensures that the signal remains within a 
reasonable range of values through the network. We use an 
equal learning rate, α, for all layers, which was adjusted via 
validation checks. The learning rate was initialized at 0.01 
[32]. After each epoch, if the error of the validation set 
(80/20 split for training) remains the same or increases, then 
the learning rate is decreased by a factor of 2. The CNN is 
trained with mini-batch stochastic gradient descent with a 
batch size of 128 images. Log loss is used to evaluate the 
performance of the network after each batch: 
 

ℓ 𝑧, 𝑓 𝑥,𝑤 = −
1
𝑁

𝐵!,!log (𝑝!,!

!

!!!

)
!

!!!

,                   (9) 

 
where N is the number of training examples in the batch, and 
M is the number of classes. When the 𝑛!!  example is 
classified into the 𝑚!! class, 𝐵!,! equals 1. Otherwise, 𝐵!,! 
equals 0. 𝑝!,! is the probability of the 𝑛!! example being 
classified into the 𝑚!! class. 
 
  
3) Over-fitting  

We use dropout and channel-wise normalization to 
prevent over-fitting. Dropout, first introduced in [35], has 
been shown to reduce over-fitting and significantly improve 
training and testing accuracy [35]. Dropout randomly drops 
hidden nodes and connections from the network during 
training, thus preventing the hidden nodes from co-adapting 
with each other and improving the generalization of the 
network. The rate of dropout 𝜁 defines the probability of a 
neuron being active during training. We applied dropout 
after each of the two convolutional layers and between the 
fully connected layers using 𝜁 = 0.1, 𝜁 = 0.25, and  𝜁 =
0.5, respectively. We use channel-wise normalization after 
every convolutional and fully connected layer to reduce error 
rate, as in [32]. Let 𝑎!,!!  be the activity of a neuron as 
computed by applying kernel k at position (s,t). Then, 
applying the ReLU nonlinearity, the response-normalized 
activity 𝑏!,!!  is given by the expression:  

bs,t
k =

as,t
k

τ +α as,t
q( )

2

q∈K
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

β , (10)
 

 
where q = max 0, k − !

!
,min K − 1, k + !

!
.  

The sum runs over n adjacent feature maps at the same 
spatial position, where K is the total number of kernels in 
the layer. The hyper-parameters were set according to [32] 

as α = 10!!, β = 0.75, τ = 2, n = 5. This normalization is 
related to the lateral inhibition found in real neural 
networks [32].  

B. Adaptive Local Window 
Implementing the PC and MS local energies requires 
defining a local window surrounding each ZLS contour 
point, in which the energy cost function is calculated. In our 
previous paper [28], we proposed an iterative approach to 
calculate the adaptive size of the local window, a process 
fully detailed in [28]. The algorithm is applied for each 
point at each iteration and for each lesion in the image 
database. The adaptive window is applied separately for the 
X and Y window dimensions and is calculated using the 
lesion scale and its texture. Let Lx, Ly be the approximate x 
and y lesion dimensions defined by a generated bounding 
box surrounding the lesion. Since we minimize user input 
by requiring only a single input point, we approximate 
lesion size by generating a surrounding bounding box as 
described in section V-B. In addition to the lesion size, 
successfully dealing with high lesion diversity requires 
considering spatial image texture. Texture analysis is 
accomplished by extracting Haralick image features (e.g. 
contrast, homogeneity) from a second order statistics 
model, namely, gray-level co-occurrence matrices (GLCM) 
[36]. Our method incorporates both global and local texture 
in a single hybrid model. For each point (x, y) examined in 
image I, we compare pairs of pixels, where the second pixel 
in the pair is (x +cosθ, y + sinθ), located at  
degrees relative to the first pixel. Let W be a local window 
of  X!×Y! pixels, surrounding an examined contour point 
within a region 𝐼. The co-occurrence matrix P(m, n, θ) of W 
is defined as the number of pixel pairs (x, y) and (x + cosθ, 
y + sinθ) in W with grey values of (m,n):  
 

P(m,n,θ ) =
1, I(x, y) =m and I(x + cosθ, y+ sinθ ) = n
0, otherwise
⎧
⎨
⎩y=1

YW

∑
x=1

XW

∑ (11)

 
Then, homogeneity and contrast criteria are evaluated for 
each  as: 

Homogeneity(θ ) = P(m,n,θ ) 1+ m− n −1( )
m,n=0

NG−1

∑

Contrast (θ ) = P(m,n,θ ) m− n 2( )
m,n=0

NG−1

∑ , (12)

 

where NG is the total number of grey levels. These spatial 
criteria are averaged for each individual axis, X and Y. For 
local analysis, criteria are evaluated for each ZLS point 
separately while for global analysis, those criteria are 
calculated and averaged over all points within the lesion 
bounding box. According to eq. (12), we define GH as the 
global homogeneity, GC as the global contrast and 
𝐿𝐶!!" , 𝐿𝐶!!" as the local contrast in the x and y directions 
surrounding the contour point at the iteration. The 
interaction between the global and the local terms plays an 
important role in determining the window size. For each ith 
contour point, the local contrasts 𝐿𝐶!!" , 𝐿𝐶!!"  are re-

θ

ith jth

θ ∈ 0,90,180, 270{ }
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estimated at each  iteration. On the other hand, the 
method computes the global contrast, GC, and the global 
homogeneity, GH, only once within the entire region of 
interest (ROI). The adaptive window size is then calculated 
as:  

Ŵxij
=

Lx
log(Lx )

×
1

GH +
1
GC

+
1

LCxij

+
1
Fj−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Ŵyij
=

Ly
log(Ly )

×
1

GH +
1
GC

+
1

LCyij

+
1
Fj−1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, (13)

 

where 𝐹!!!  represents the average value of the energy 
functional over all ZLS contour points during the previous 
iteration. As long as curve evolution continues, the average 
value of 𝐹!!!  should decrease as the size of the local 
window decreases. 
 

C. Method Optimization 

To optimize the local energies, each point is considered 
separately, and the algorithm attempts to minimize the 
energy computed inside each local region. Local 
neighborhoods are split into their local interior and local 
exterior by the evolving ZLS curve. The energy is 
optimized using the energy model in an adapted 
surrounding region. Let E(ϕ) be an energy functional 
derived by a localization of the generic force F(ϕ): 

 
E(φ +ξ ) = δ φ(x, y)+ξ( )

Ωn

∫ ⋅F I(x, y),φ(x, y)+ξ( )dxdy, (14)

 
where ξ represents a small change along the normal 
direction of Φ(x, y). The first variation of (14) is defined as 
[15]: 
 

𝐸 𝜙 = 𝛿𝜙 𝑥, 𝑦 𝐹 𝐼 𝑥, 𝑦 ,𝜙 𝑥, 𝑦 𝑑𝑥𝑑𝑦                15 
!!

  

 
We take a partial derivative of (15) and consider the minor 
differential of the perturbation (ξ " 0): 
 
∇ξ |ξ=0 E(φ +ξ ) = δφ(x, y) ⋅ ∇φ(x, y)

Ωn

∫ F I(x, y),φ(x, y)( )dxdy

+ ηφ(x, y)dxdy,
Ωn

∫ (16)
 

 
where 𝜂𝜙 𝑥, 𝑦  represents the derivative of 𝛿𝜙 𝑥, 𝑦  equal 
to zero for every ZLS point, thus having no effect on the 
curve evolution. The Cauchy–Schwartz inequality can be 
used to show that the optimal direction of curve evolution is 
[24]: 
 
∂φ(x, y)
∂t

= δφ(x, y) ⋅ ∇φ(x, y)
Ωn

∫ F I(x, y),φ(x, y)( )dxdy, (17)  

 

Equation (17) is applied in our proposed method to evolve 
the ZLS curve between sequential iterations of the 
segmentation process. 

IV. IMPLEMENTATION DETAILS 

A. Narrow Band  
The proposed method calculates the spatial statistics only 

for grid points located within a narrow band of the distance 
map 𝜙 𝑥, 𝑦  around the curve C. This idea was introduced 
in [38] and has become common in implementations of 
local segmentation frameworks. The segmentation process 
begins with the initialization of every pixel within the 
narrow band using values of exterior and interior statistics 
[24]. The initialization operation is only performed once for 
each pixel. The narrow band moves over iterations, thus 
including grid points that must be initialized during the 
segmentation. An update of the distance map 𝜙 𝑥, 𝑦  
occurs only within the narrow band.  

B. Training Set and Data Augmentation 
The CNN was trained separately on the MRI and CT 

datasets because both image sets differed significantly from 
each other in spatial characteristics of the lesions. However, 
the CNN architecture remained the same across both 
datasets. We evaluated our method for each dataset using 
10-fold cross validation: 90% of the cases were used for 
training and the other 10% were considered as the testing 
set. The training set for the CNN was created by 1) eroding 
and dilating the manual annotation of a lesion and by 2) 
augmenting the data. We performed four dilations (p3) with 
factors 1.2:0.5:2.7 and four erosions (p1) with factors 
0.25:0.2:0.85 for each image. The p2 class was represented 
by the original manual annotation.  
   Deep neural networks, due to their size and complexity, 
typically require substantial datasets to perform optimally. 
Therefore, our eroded / dilated training set was followed by 
data augmentation to artificially increase the size of the 
training set. Data augmentation was performed by applying 
a combination of elastic and affine distortions to each 
training image. Figure 6 shows an example of a class p1 and 
class p3 representation of the same lesion and two 
distortions for each class image. Simard et al. [38] used 
non-rigid distortions to significantly increase accuracy on 
the MNIST image database of handwritten digits.

 
We 

create elastic distortions by generating random 
displacement fields with values within the range of [-1 1], 
convolving these fields with a range of Gaussian filters, and 
multiplying the resulting matrices by a range of constant 
factors, controlling the intensity of the deformation. After 
the image was non-rigidly distorted, we applied rotation  
(-30 ≤ θ ≤ 30 degrees), scaling (0.75 ≤ ε ≤ 1.3), and 
translation (-1 ≤ x ≤ 1, -1 ≤ y ≤ 1) to create a 
transformation-invariant, texture-based model. 
 
 
 

jth
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Fig. 6. Data augmentation. The top row shows an image (left) that was 
obtained by convolving the eroded mask of the manual annotation and the 
original image. The bottom row shows an image (left) that was obtained by 
convolving the dilated mask of the manual annotation and the original 
image. The center and the right columns present two distortions of the left 
image in the same raw. Both elastic distortions and the affine 
transformations (rotation, scaling, translation) are evident. 
 

V. EXPERIMENTAL DETAILS 
A. Data 
Our institutional review board approved this study. We 
analyzed 276 liver lesions obtained from two different 
datasets. The first dataset contained 112 contrast-enhanced 
CT images (Siemens Medical Solutions, Erlangen, 
Germany) of liver lesions (43 hemangiomas, 45 cysts and 
24 metastases). Image acquisition parameters were: 120 
kVp, 140–400 mAs, 2.5-5 mm section thickness and pixel 
spacing of 0.704 ± 0.085 mm. The second dataset included 
164 liver lesions from 3T gadoxetic acid enhanced MRI 
(Signa Excite HDxt; GE Healthcare, Milwaukee, WI) scans 
in patients with cirrhosis at a tertiary liver center for 
evaluation of suspected hepatocellular carcinoma (HCC) 
and were found to have one or more LI-RADS (LR), LR-3 
or LR-4 lesions. Image acquisition parameters were: 5 mm 
slice thickness and pixel spacing of 0.805 ± 0.078 mm; 
pulse sequences of single-shot fast spin-echo T2-weighted 
and pre- and post-contrast axial 3D T1-weighted fat-
suppressed gradient-echo were used. The two datasets were 
acquired from two different academic institutions. Lesion 
size varied widely across the 276 cases. The lesions were 
also highly diverse in terms of spatial characteristics 
(homogeneity and contrast) due to different imaging 
modalities, and in different diseases, enhancing the 
importance and the need for an adaptive parameter-based 
method capable of handling a wide range of spatial textures.  

B. Region of Interest and Initial Distance Map  
To define the region of interest (ROI), board-certified 

abdominal imaging radiologists marked one-input point in 
the approximate center of the lesion (red plus sign, Fig. 7). 
A bounding box was then generated of size 52 x 52 pixels 
surrounding this center point for each MRI lesion (red box, 
Fig. 7) and of size 100 x 100 pixels for each CT liver 
lesion. These bounding boxes were fixed for all lesions 
(MRI/ CT separately), they were not depended on the 
specific tested lesion, and they ensured that the entire lesion 
and its surroundings were included in the segmentation 
process (CT images included larger lesions, section V-A). 

Note that given the constraints of the CNN architecture, the 
size of the bounding box must be a multiple of four. The 
distance map, 𝜙 𝑥, 𝑦 , was constructed and an initial zero 
level set contour was obtained. Six different contour 
initializations were created for MRI images, using radii of 
3, 5, 7, 9, 11 and 13 pixels. Similarly, six different contour 
initializations were created for CT images, using radii of 5, 
10, 15, 20, 25 and 30 pixels. For both MRI and CT images, 
these radii generated initial contours that were located 
inside the lesion (‘small initialization’), while other 
contours were located close to the lesion boundaries 
(‘accurate initialization’), and others were bigger than the 
lesion (‘large initialization’). This broad range of 
initializations allowed us to evaluate the strength of our 
method in handling initial contours far away from the lesion 
in either direction. 

 
Fig. 7. Bounding box (ROI) reconstruction. A single input point indicates 
the lesion’s center (red plus). The bounding box (red rectangle) is 
constructed by taking a region surrounding this center point.  

 
Radiologists traced the liver lesions on a single 2D slice 

for each liver lesion, providing manual markings that 
served as the reference standard for evaluating the proposed 
method. The automated segmentation contours were 
extracted and quantitatively compared with the radiologist's 
marking using the Dice similarity coefficient.  

VI. RESULTS 

A. Lesion Sizes 
The CT liver lesions had an average radius of 22.09 ± 

13.35 pixels and the MRI liver lesions had an average 
radius of 7.12± 2.19 pixels. These sizes were considered 
when establishing experiments with different initial 
contours.  

B. Segmentation Performance 
The challenges regarding the segmentation process 

include: 1) a variety of spatial texture characteristics and 2) 
a wide range of optional initializations (Fig. 8). All 276 
lesions have been segmented by our proposed adaptive 
contour parameters method (ACP). For all 6 contour 
initializations, average Dice coefficients and standard errors 
of 0.78 ± 0.05 and 0.79 ± 0.05 were found for the PC and 
MS energies, respectively.  

C. Parameter Evolution 
 We deliberately chose initial contours far from the lesion 

boundary in order to test the strength of our method. During 
the segmentation process, as the contour gradually 
approached the lesion boundaries, λ1 and λ2 became more 
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similar to each other as well. Figure 9 presents two 
examples of this convergence, showing an MRI liver lesion 
with a very small initial contour (Fig. 9a), and another 
lesion with a very large initial contour (Fig. 9b).  

 

a)          

b)           
Fig. 8. Lesion segmentation using the proposed method with different 
initializations. Left column - small initialization (3-pixels radius), middle 
column – more accurate initialization (5-pixels radius), right column – 
large initialization (9-pixels radius). a) low-contrast lesion, b) noisy and 
heterogeneous tissue surrounding the lesion. For both cases, lesion is 
located close to the liver boundary. Magenta – initial contour, yellow – our 
final segmentation, green – manual radiologists’ annotation. 

 

a)           

b)           
Fig. 9. The evolution of λ1, λ2 parameters over iterations of the 
segmentation process. a) Small initial contour, b) big initial contour. Cyan 
is the initial contour, yellow is the automated contour during the iterative 
process – a) iteration no. 10, b) iteration no. 100. Green is the final 
automated contour, and magenta is the manual marking. Although the 
CNN initially sets λ1 or λ2 significantly higher than the other depending on 
the location of the initial contour, the values eventually converge. 

 

D. Process convergence 
Figure 10 demonstrates the convergence of both the Dice 

coefficient and the energy functional over multiple 
iterations for one example case in each of the CT and MRI 
datasets. As can be clearly seen for both the CT and MRI 
images, the Dice coefficient increased over successive 
iterations, indicating greater agreement between the manual 
and automated segmentations. As expected, the energy 
decreased during the segmentation process, suggesting that 
an appropriate minimization of the energy functional 
occurred. For both criteria, substantial convergence was 
obtained after 60 iterations, and there were only minor 

fluctuations around their final values over later iterations. 

E. Comparison with Fixed Contour Parameter method 
We compared our proposed method (ACP) with a state of 

the art local framework of level set segmentation. This 
framework uses Fixed λ1, λ2 Contour Parameters and a 
fixed local window size (FCP). For our datasets, several 
values of λ1 and λ2 were tested, and λ1=λ2=2 was chosen. In 
addition, we used local window sizes of 5-pixels and 7-
pixels surrounding each contour point for MRI and CT liver 
lesions respectively. Those fixed parameter values were 
selected for FCP because they supplied the average best 
results for all cases.  Figure 11 shows some examples of 
different lesion characteristics, initial contour size, and final 
segmentation of the lesion, using both ACP and FCP 
methods. For the combined dataset of 276 lesions and all 
six contour initializations, FCP had average Dice 
coefficients of 0.64 ± 0.13 and 0.53 ± 0.14 for PC and MS 
energy models, respectively. Those Dice coefficients were 
significantly lower (p < 0.05 for PC and p < 0.01 for MS, 
Wilcoxon) for FCP compared with our ACP segmentation 
performance (section VI-B). Figure 12 clearly shows that 
our ACP outperforms the state of the art FCP. 

         a)  

      b)   
Fig. 10. Convergence of a) the Dice coefficient and b) the energy 
functional over iterations for both MRI and CT datasets. 
 

a)  b)  c)  

d)  e)  f)   
Fig. 11.  Comparison of the segmentations that were obtained by the 
manual marking (green contour), the proposed ACP (yellow contour) and 
the FCP method (cyan contour).  The initial contour is shown in magenta. 

 
A subset of lesions for which one or more automated 

methods obtained less than 85% agreement with the manual 
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marking, indicating a more challenging case, was also 
examined (Table I). Across both datasets, both energy 
models and all initializations, the average number of cases 
included in this subset was 103 ± 24. For this subset, a 
significant Dice improvement of 0.21 ± 0.09 was obtained 
using our ACP method (Wilcoxon, p<0.001).   

We also considered a subset of lesions where an absolute 
difference of more than 10% between our ACP and the FCP 
method was present; in these cases, ACP could be better or 
worse than FCP. This threshold was chosen based on a 
radiologist opinion that in our set of images, more than 10% 
difference is clinically significant. For this subset, ACP 
performed significantly better with a Dice improvement of 
0.31 ± 0.1 compared with FCP (p < 0.001, Wilcoxon). 
Moreover, as can be seen in Fig. 13, the proposed ACP 
method again shows greater robustness to imaging modality 
and type of local energy modeled.  
 

 

a)  

        b)  
Fig. 12. Mean ± SE of Dice criterion over the whole set of 276 cases and 
for each contour initialization size for a) the PC energy model, b) the MS 
energy model. 
 

All evaluations presented above include the six different 
contour initializations that were generated by placing the 
contour’s center at the approximate center of the lesion and 
changing its diameter. We conducted one additional test to 
examine the ability of the method to handle different 
contour locations, such as contours partially inside and 
partially outside the lesion. We considered the effect of 
locating the initial contour at a displaced center point; four 
different displacements of [±3, ±3] pixels relative to the 
lesion center were tested for all 276 lesions. In this 
experiment, our ACP supplied an average median Dice 
coefficient of 0.84 ± 0.03, compared to 0.63 ± 0.26 
obtained by the FCP model. As before, ACP showed 
significantly better agreement with the manual marking 
than did FCP (p < 0.001, Wilcoxon), proving to be more 

robust to initialization location. 
 

TABLE I. AVERAGE DICE COEFFICIENTS FOR A SUBSET OF LESIONS 
THAT HAD DICE SIMILARITY COEFFICIENT <0.85 WITH THE MANUAL 

MARKING. THE PRESENTED DICE VALUES ARE AVERAGED OVER ALL 6 
CONTOUR INITIALIZATIONS. ACP SIGNIFICANTLY OUTPERFORMED THE 

EQUIVALENT FCP METHOD (P < 0.001, WILCOXON PAIRED TEST) 
 Our ACP FCP 
MRI – PC energy 0.73 ± 0.03 0.59 ± 0.13 
MRI –MS energy 0.77 ± 0.04 0.47 ± 0.14 
CT – PC energy 0.66 ± 0.06 0.47 ± 0.12 
CT – MS energy 0.67 ± 0.12 0.48 ± 0.1 

 

 

Fig. 13. Dice coefficient for a subset of cases in which there was more than 
10% difference between our ACP and the state-of-the-art FCP in either 
direction. 

F. Comparison to other state-of-the-art methods  
We compared our method to another level set approach 
proposed by Li et al [5]. The authors proposed a region-
scalable fitting (RSF) model. Their method can handle 
images with intensity inhomogeneities, because it presents 
weighted averages of the image intensities in a Gaussian 
window inside and outside the contour. The authors 
presented their method as better than the PC and MS energy 
models for cases with such inhomogeneity, which is a 
prominent challenge that appears in our dataset. However, 
as with the FCP method presented above, Li’s method still 
requires definition of the energy functional parameters, λ1 
and λ2, as well as the value of the local scale. In their 
method, λ1 and λ2 were fixed across different lesions, while 
the scale 𝜎 was manually fitted between lesions according 
to the analyzed spatial characteristics. The inefficiency of 
manual tuning enhances the added value of adaptive 
parameter tuning, as proposed in our ACP method.   
We tested Li’s RSF method on both the MRI and CT 
datasets across all initializations. In order to conduct an 
optimal evaluation of the RSF method, we analyzed the 
liver lesions using a range of Gaussian scales (0.5:0.5:4). 
Values to the left and right of this range resulted in 
convergence of the contour into local minima and increased 
sensitivity to noise respectively. The best scale was then 
chosen for each lesion. In addition, several values of λ1 and 
λ2 were tested, and λ1=λ2=2 was found to supply the best 
average results. Li’s method supplied an average Dice of 
0.66 ± 0.09 for MRI and 0.57 ± 0.09 for CT across all 
initializations. Thus, the segmentation results obtained by 
Li’s method are comparable to the traditional FCP results 
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(p>0.05, Wilcoxon). However, our method outperforms 
Li’s method for all initializations (p < 0.01, Wilcoxon). 
These results enhance the strength of our proposed ACP, 
which is significantly better than both FCP and RSF (Fig. 
14). 

In addition to the comparisons with 2 level set 
frameworks, we also compared our ACP technique with 2 
automatic, CNN-based segmentation methods. The first one 
is a patch-based CNN technique in which a bounding box 
was created and the image was divided into 5x5 patches 
[32]. Each patch was classified by a neural network as 
normal or abnormal tissue (i.e., lesion). The bounding box 
size remained the same as the previous experiments for 
both the MRI and CT datasets. The architecture of the 
neural network replicated the fully connected layers of the 
CNN architecture we proposed for our ACP method. The 
learning rate (𝛼 = 0.1) and number of nodes (nodes = 100) 
in the dense layer were optimized using Grid Search. Ten-
fold cross validation was applied to evaluate the method. 

 
Fig. 14. Mean ± SE of Dice criterion over the whole set of 276 cases and 
for each contour initialization for our ACP (red), FCP (blue), and RSF 
(green) methods. 
 

The patch-based CNN technique resulted in an average 
Dice coefficient of 0.48 ± 0.27 for MRI liver lesions and 
0.46 ± 0.25 for CT lesions, significantly lower than the 
equivalent values obtained by our ACP method (p<0.001, 
Wilcoxon). The sensitivity of the method was 0.93 and the 
specificity 0.31, indicating that the network’s low accuracy 
was primarily a result of false positives.  

We also compared our method with a point supervised-
based CNN approach proposed by Bearman et al. [39]. This 
approach trains a fully convolutional network using only a 
few representative points from each class, lesion or healthy, 
instead of all pixels within the region of interest. The CNN 
then classifies each pixel in the image as lesion or normal. 
Although their approach uses a single point to represent 
each class, we chose ten representative points on the lesion 
due to the high level of noise and heterogeneity in our 
images. We trained the 16-layer VGG net that was used in 
[39] and set the architecture and parameters to the same 
values as were presented by the authors (𝛼 = 10!!, 𝜍 =
0.9, 𝜂 = 0.0005). Those values were also found to be the 
best in our analysis. As the authors did, we added a 
deconvolution layer for bilinear upsampling of the output to 
pixel-level predictions, and changed the upsampling 
dimensions to fit the sizes of our images. We found that 

Bearman’s method performed worse than the patch-based 
CNN method. Their method, when compared to the manual 
markings, resulted in Dice coefficients of 0.35±0.21 for 
MRI and 0.39±0.24 for CT, significantly worse than our 
ACP results (p<0.001, Wilcoxon). 

VII. DISCUSSION AND CONCLUSIONS 
We present a novel method for adaptive estimation of the 
λ1, λ2 contour parameters for level set segmentation. When 
combined with estimation of the adaptive window size 
surrounding each ZLS point, as suggested in our previous 
paper [28], we first provide a fully automatic and adaptive 
method once a single center point of the lesion has been 
indicated on the image. The main benefits of the proposed 
approach are: 
•  Generalization of the segmentation process that results in 

an adaptive solution for each individual case. The method 
uses the same CNN architecture and the same equations 
for calculating the appropriate λ1, λ2. 

•  Ability to handle highly diverse lesion datasets  
•  Independence from substantial manual interaction,   
    parameter tuning, or accurate initial contour 
•  Higher agreement with the manual marking and increased 

robustness to various conditions (initialization, energy 
model, spatial texture) compared with state of the art 
methods 

Our method was validated on two imaging modalities, two 
energy functionals, and a wide range of sizes and locations 
of contour initialization relative to the manual annotation of 
the lesion. All of this, in addition to the substantial diversity 
of lesion characteristics, shows the strength of our method. 
We compared our results with two state-of-the-art level set 
frameworks and two CNN based methods. Figure 11 shows 
that our ACP method can handle different types of lesions – 
low contrast, heterogeneous, noisy background, or close to 
liver edge, substantially better than the commonly-used 
level set framework with pre-defined Fixed Contour 
Parameters (FCP). Figure 12 shows that our method 
outperforms FCP in terms of segmentation accuracy and 
robustness regardless of the initial contour used and has an 
average Dice coefficient 0.19 higher than FCP. We also 
analyzed two subsets of lesions that were composed of 
more challenging cases (Table I, Fig. 13). Dice 
improvements of 0.21  and 0.27  were obtained with the 
ACP method in comparison to the classic FCP. ACP also 
shows an average Dice improvement of 0.22 over FCP 
when the initialization is displaced from the lesion center 
point, thereby demonstrating robustness to location change 
in the initial contour. Our proposed method shows better 
agreement with the manual marking and higher robustness 
to different contour initializations, energy types, imaging 
modalities and different subsets of lesion complexity than 
state-of-the methods. These findings indicate that common 
methods (active contour based and CNN-based) cannot 
provide accurate segmentations of such highly diverse 
datasets. Common CNN techniques result in both many 
false positives and negative cases and are unable to segment 
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challenging lesions with high accuracy. On the other hand, 
one of the well-known challenges of commonly used active 
contour models is handling highly heterogeneous lesions, 
low contrast lesions, or inaccurate contour initializations. 
Each of those lesion types requires completely different sets 
of energy functional parameters. Using a fixed set of 
parameters will result in an inaccurate segmentation of the 
lesion (e.g inability to converge into the boundaries of low 
contrast lesions or converge into local minima in the case of 
a heterogeneous or noisy lesion). Thus, our combination of 
deep learning and level set captures the benefits of both 
approaches and overcomes their limitations, to achieve 
significantly better results than either method alone. 
The presented work has some limitations. First, a larger 
cohort is desirable. Second, additional manual markings for 
each lesion will result in more accurate evaluation of the 
automated segmentation. Future work may include an 
extension of the method to 3D, as well as incorporation of 
automatic lesion detection prior to segmentation, so that the 
entire segmentation process will be fully automated and 
will have no dependence on user input. Another possible 
extension is a joint training scheme that can incorporate 
different modalities into a single training process. 
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